
The Toolbar Library

Stephen Chung
stephenc@cunixf.cc.columbia.edu

Tim Liddelow
tim@kimba.catt.citri.edu.au

This set of C and C++ routines implement the slick "toolbar" found in
Microsoft Word for Windows, Excel etc. They have been written and
compiled using Borland C++ 2.0 and 3.0. They should however work
fine with other compilers. Provided are C routines and a small C++
class.

Using the Toolbar library

Look at the sample program TBTEST.C for an example. That toolbar
is part of a Japanese word processor. The icons have not been
included because they are embedded in a large resource file with
everything else. If you want some of them, send Stephen Chung
email.

First of all, the toolbar is a 3-dimensional, horizontal bar containing
toolbar buttons. You can add other kinds of child window controls
onto the toolbar as well, such as combo boxes etc.

Before you do anything, you must define an array of TOOLBARICON.
Each element in that array corresponds to one toolbar button. The
fields should be set according to the following:

int id /* The numeric ID of the button (0-255) */
int x, y /* The X,Y position of the button, in pixels */
int width,

 height /* The width/height of the button, in pixels */
int state /* The initial state of the button:

-1 = Disabled
 0 = Off

 1 = On
 2 = Grayed
 */
 int cycle /* The mode of that button, upon a mouse click:
 0 = Leave the state alone
 (Set it with a BM_SETSTATE message)

 1 = Always undepressed, but flashed once
 2 = Toggle On --> Off --> On
 3 = Toggle On --> Off --> Gray --> On
 */

char *disabled /* The name for the DISABLED bitmap */
char *undepressed /* The name for the OFF bitmap */
char *depressed /* The name for the ON bitmap */
char *grayed /* The name for the GRAYED bitmap */
char *pressing /* The name for the PRESSING bitmap */

You should leave the rest of the fields alone. They are used internally
by the library routines.

Creating the Toolbar

In the C version, to create the toolbar, call CreateToolbar. This
routine has the following parameters:

HWND CreateToolbar (HWND parent,
 int x,
 int y,
 int width,
 int height,
 int thickness,
 int id,
 int nr_buttons,
 HANDLE hInstance,
 TOOLBARICON *icons,
 char *xcursor)

parent Parent window handle
x, y (x, y) position of toolbar in pixels relative to

parent window
width, height Width and height of toolbar in pixels
thickness Thickness or fatness of the toolbar
id The id of the toolbar
nr_buttons The number of buttons on the toolbar
hInstance Instance handle of the application
icons Points to a TOOLBARICON array
xcursor The name of a cursor for a disabled toolbar

button

The above routine will return the handle for the toolbar. You can use
this handle to add more child controls (see TBTEST.C).

If you are using C++, the prototype for the constructor is

void ToolBar::ToolBar (HWND parent,
 int x,
 int y,
 int width,

 int height,
 int thickness,
 int id,
 int n,
 HANDLE hInstance,

 TOOLBARICON *icons,
 char *xcursor)

To obtain the window handle using C++, simply use the member
function Window().

Notes

The toolbar will send a WM_COMMAND message to its parent when
one of its buttons is clicked. The following paremeters are passed:

message WM_COMMAND

wParam Low Byte = Toolbar ID
 High Byte = Toolbar button ID

lParam Low Word = Toolbar button window
handle
 High Word = BN_CLICKED

REMEMBER that even other child controls that you define (such as
list boxes) will return with wParam = (Child ID << 8) | (Toolbar ID).
This means that you are restricted to having 256 toolbars and 256
toolbar buttons and child controls on each toolbar. Well, life is tough,
isn't it?

Support routines

These routines are listed in prototype format and their parameters are
explained. Note that the C++ equivalent class member functions do
not always required all the parameters of the corresponding C one.

You enable and disable toolbar buttons by calling
EnableToolbarButton with the following parameters:

void ToolBar::EnableToolbarButton (int child,
 BOOL Enabled)

void EnableToolbarButton (HWND hwnd,

 int child,
 BOOL Enabled)

hwnd Toolbar window handle
child Id of the toolbar button

 Enabled Nonzero enables button, zero disables

You can also set or query the state of a toolbar button by sending the
TOOLBAR BUTTON a BM_GETSTATE or BM_SETSTATE message,
just as you would for a normal push button. You can also send the
BM_GETSTATE and BM_SETSTATE messages to the toolbar's window
procedure, with the toolbar button's ID passed in lParam.

If, for some twisted reason, you want to modify the characteristics of
the toolbar button dynamically, you can first call GetToolbarButton to
fill in a TOOLBARICON structure:

HWND ToolBar::GetToolbarButton (int child,
 TOOLBARICON *icon)

HWND GetToolbarButton (HWND hwnd,
 int child,
 TOOLBARICON *icon)

hwnd Toolbar window handle
child Id of the toolbar button

 icon Pointer to a TOOLBARICON structure to
store the button information

This routine will return the window handle of the toolbar button. Now
you can change the settings and then call ModifyToolbarButton:

void ToolBar::ModifyToolbarButton (HWND hwndButton,
 TOOLBARICON *icon)

void ModifyToolbarButton (HWND hwndButton,
 TOOLBARICON *icon)

hwndButton Toolbar button window handle
icon The TOOLBARICON structore containing the

new settings

There is also a neat little routine called Create3DEffect which will
make any rectangle within any window look like a 3-dimensional bar:

void Create3DEffect (HDC hdc,
 RECT *rect,
 int thickness,

 int style)

hdc Handle to some device context to draw on
rect Pointer to a rectangle defining the area to

make 3D. If rect is NULL, the entired
window is used.

C++ Example

foo()
{

TOOLBARICON Icons[] = { };
TOOLBARICON IconInfo;

ToolBar t(hParent, 10, 10, TOOLBAR_WIDTH, TOOLBAR_HEIGHT,
TOOLBAR_THICKNESS, TOOLBAR_1, NICONS, hInstance,
Icons, NULL);

...

...
t.Hide();
...
...
t.EnableToolbarButton(2, FALSE);
ToolbarIconWindowHandle = t.GetToolbarButton(2, &IconInfo);
ToolbarWindowHandle = t.Window();
...
...

}

If you want to change the name of the toolbar window classes, they
are defined in toolbar.h.

Remember to export ToolbarProc and ToolbarButtonProc in your .def
file of course.

Afterwords

These routines are copyright © 1991, 1992 Stephen Chung and Tim
Liddelow. This copyright message should be retained in the source
code at all times.

For individual, non-commercial, non-shareware use these routines can
be used without approval. Otherwise approval should be sought from
either author.

Any questions and/or bug fixes, please send email to:

Stephen Chung stephenc@cunixf.cc.columbia.edu
or Tim Liddelow tim@kimba.catt.citri.edu.au

If it bounces, then try schung@cogsci.Berkeley.EDU

Have fun!

